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Numerical tools @ IPP Garching & Greifswald

e GENE: Gyrokinetic Electromagnetic Numerical Experiment

Strong scaling for 8k cores

Solves 5D NL system of GK equations .,
Runs on Hydra, NERSC, Marconi etc. - 2
Open source www.genecode.org " o

e GIST: Geometry Interface for Stellarators and Tokamaks
Processes VMEC (or EFIT) equilibria, calculates geometry

| |

e Visualization tools (OpenGL, Vislt, Paraview)
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Alcuson et al., Phys. Plasmas 23, 102308 (2016)




Volume rendering* for global 3D GENE (OpenGL/Paraview)

*Artificial data. Gyrokinetics are expected from underway PhD project (Maurer et al.)
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Operational status of GENE in 3D geometry

e GENE treats the nonlinear GK system on a grid either

Local: flux tube geometry around a single field line
or
Surface-global: on a radially localized flux surface

e We address the following types of micro-turbulence:

lon-Temperature-Gradient (well understood)
Trapped-Electron-Mode (well understood)
Kinetic-Ballooning-Mode (ongoing PhD work)

Electron-Temperature-Gradient (recent results)
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Gyrokinetic theory

e Perhaps the most elegant theory in plasma physics cast as field theory

e Dynamical system lives on tangent bundle TM (g?, v?) of a manifold M.
The Lagrangian is expressed by a 1-form w

e An invertible (no loss of information) transformation is needed between
positions (distribution function) and gyrocenters (perturbed fields)

e Find vector field G such that Lie derivative L w is free of fast gyration

e Perturbations: Exploit small parameter ¢=p/L to solve for each order

e “Pull back” the gyrocenter distribution in Vlasov equation (continuity) in
particle coordinates to use in Maxwell's equations
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Peta-scale ITG turbulence simulations in stellarators

QUASAR
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Central feature of 3D turbulence is poloidal localization

On a tokamak surface density fluctuations cover the entire domain

The stellarator tends to localize ITG fluctuations in a thin hot stripe

Turbulence localization has remarkable implications on turbulence

Xanthopoulos et al., Phys. Rev. Lett. 113, 155001 (2014)
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-~ 3D shaping causes increased local gradients due to surface compression

Thanks to localization of fluctuations: surface averaged level < local level
18

12 Local level

12

Surface-averaged level
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Xanthopoulos et al., Phys. Rev. X 6, 021033 (2016) ''Mme [cs/al




Tokamak turbulence insensitive to p* on surface

TOK r/a=0.8 a /Ly =2.75
16
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Examine dependence of ITG turbulence on normalized ion gyroradius p/a=p*
Vary p* in flux-surface simulations for stellarators and tokamaks (no radial effects)
For tokamaks, no dependence is observed for reasonably large p* (same heat levels)

Pronounced scale separation between equilibrium and turbulence scales
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3D turbulence reacts on finite p*: Stabilization

W7-X rla=0.8 a/lLy,=2.75
20
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Localization of turbulence introduces an effective length € much smaller than a

Therefore, p* . = p* . a/t > p*. Equilibrium scales can interfere with turbulence

Mode falls onto “speed bumps” and gets stabilized (lower heat flux as p* increases)
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3D turbulence reacts on finite p*: Stabilization

ITG heat flux scaling over gradient with varying p*
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3D geometry reveals new “ZF free” saturation regime
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e Entirely opposite behavior compared to ITG saturation in tokamaks

e In tokamaks strong ZF shears toroidal branch apart and slab prevails

A new saturation regime found for 3D ITG where the toroidal branch persists in the absence of ZF
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e Scaling in “ZF dominated” regime represented by TOK: Q ~a/L "3 and E ~ k *(-7/3)
See also Barnes, Parra, Schekochihin PRL 107, 115003 (2011)
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e Scaling in new “ZF free” regime represented by HSX: Q ~ a/L#2.25 and E ~ k *(-10/3)
Plunk, Xanthopoulos, Helander PRL 118, 105002 (2017)

¢ Blending of two regimes with intermediate power laws found in W7-X: Q ~ a/L.#2.45 and E ~ ky"(2.75)
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Turbulence optimization for Wendelstein 7-X

Use STELLOPT with Differential Evolution (stochastic global search)

Minimize Rastrigin (nonlinear multimodal) function = Population-based: Many solutions evolving

NP = 200 individuals evolve via strategy RAND2 g
@
xtest= xi + F ¥ ( xi - xrand) g
If X, fitterthan X = Replace X
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Versatile: Plenty of different strategies
No guarantee for (optimum) convergence

Sensitivity to parameters (lots of fiddling)

Population evolution
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Turbulence optimization for Wendelstein 7-X

Minimize new ITG target function: Curvature/distance?
Starting from W7-X, we found configuration MPX with reduced ITG

x2 for Turbulence x2 for Neoclassics
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Xanthopoulos et al., Phys. Rev. Lett. 113, 155001 (2014)
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Evaluation of MPX quasi-omnigenous®* equilibrium

*bounce average radial drift = 0
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Identify elongation as critical geometric factor
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Controlling turbulence via free parameter

Varying the parameter A we can optimize or de-optimize configurations
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The initial W7-X campaign featured:
¢ Upto 4.3 MW of ECRH power.
¢ Graphite limiter configuration.
¢ Unshielded first wall
¢ 4 MJinjected power (administrative limit)

First plasma on December 10, 2015
o 11 Weeks of plasma operations.
o 940 Experimental programs (“shots”)
o 402 Dedicated physics scenarios (“shots”)

Electron

lon

Electron

WT X Program 20160308 008

Time [s]

=5keV 4,0 MW of central ECRH heating
=2.2keV Stored energy: 0.4 M)

n, =3.5x10"m?  pylselength: 1.2s

Pablant, submitted to PoP




Transport analysis for OP1.1

o Transport is not adequately explained by NC physics
Only 50% of the total heat losses is predicted
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« Challenge: Can turbulence explain (some of) the 50% gap?
Other plausible candidates: charge exchange and radiation losses
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 Stellarator core (and beyond) is affected by ETG turbulence

P. Xanthopoulos

Transport analysis for OP1.1

GENE simulations performed at distinct radii
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Conclusions

| ocalization of fluctuations on flux surface is found in stellarators

Local strong turbulence on surface is stabilized at zero p*

Stellarator turbulence stabilizes as a reaction to finite p*

New saturation regime discovered independent of zonal flows

Optimization tools are developed including turbulence proxies

Stellarator turbulence can be controlled without affecting optimization

Power balance for W7-X core including ETG turbulence is under way
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